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Abstract
A self-consistent calculation scheme for correlated electron systems is created
based on the density-functional theory (DFT). Our scheme is a multi-reference
DFT (MR-DFT) calculation in which the electron charge density is reproduced
by an auxiliary interacting fermion system. A short-range Hubbard-type
interaction is introduced in a rigorous manner with a residual term for the
exchange–correlation energy. The Hubbard term is determined uniquely by
referencing the density fluctuation at a selected localized orbital. This strategy
to obtain an extension of the Kohn–Sham scheme provides a self-consistent
electronic structure calculation for the materials design. Introducing two
approximations for the residual exchange–correlation energy functional, we
have the LDA + U energy functional. Practical self-consistent calculations are
exemplified by simulations of hydrogen systems, i.e. a molecule and a periodic
one-dimensional array, which is a proof of existence of the interaction strength
U as a continuous function of the local fluctuation and structural parameters of
the system.

1. Introduction

Inclusion of the short-range correlation effect (SRCE) is a long-term quest for first-principles
electronic structure calculations based on the density-functional theory (DFT) [1, 2]. In
principle, this is possible, since the strategy introduced by Hohenberg, Kohn and Sham was
shown to be given by a rigorous variational principle [3–6]. Although the method should give
formally an exact calculation scheme for the Coulomb system, the energy density functional
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is not perfectly known at present. Plausible approximation schemes have been proposed
and utilized [2, 7–9]. However, they have their own limitations. For example, the local-
density approximation (LDA) is known to give a metallic ground state for the Mott insulator
La2CuO4 [10–16]. This failure of LDA is a central problem of DFT, for which we hope
the inclusion of SRCE to be a solution. In particular, when LDA gives near degeneracy in
the ground state, appropriate treatment of the SRCE can lift the degeneracy to have a non-
degenerated ground state, implying formation of the Mott gap. This assumption may be widely
accepted as a natural conclusion according to the study of the Hubbard models [17, 18].

Here we should note that the Kohn–Sham scheme has flexibility and can be adjusted even
for the Mott insulator. If we introduce the wavefunction of an entangled state as the Kohn–Sham
ground-state wavefunction, the excitation spectrum for the Kohn–Sham system may change.
This implies that the response of the system has changed. Considering the adiabatic shift in
the ground state as a function of some outer parameters like the external electro-magnetic field,
there should be an essential change as a consequence of the introduction of the SRCE in the
Kohn–Sham scheme. Even if we consider the density-functional theory for the ground state of
the Coulomb system, this extended scheme allows us to handle the correlated electron system
using the density-functional theory.

Thus we still have many possible approaches for practical computation as a realization
of the Kohn–Sham scheme in an extended formulation. Actually, the Kohn–Sham equation is
regarded as an auxiliary equation for realizing the optimization process of the single-particle
density n(r). In this paper, we consider this physical quantity as a central order parameter of the
electron system. Usually, a system of non-interacting fermions is utilized to describe n(r) in
the Kohn–Sham scheme. Interestingly, we are allowed to consider interacting fermion systems,
which can be used to replace the non-interacting Kohn–Sham system. This is called the multi-
reference density-functional theory (MR-DFT) [19–25]. To develop a direct description of
a Mott insulating state, one of the authors defined a kind of MR-DFT [26]. Utilizing this
formulation, called the extended Kohn–Sham scheme (EKSS), one has a chance of detecting
Coulomb suppression of the fluctuation, which is not directly found in n(r).

The interacting Kohn–Sham system was originally motivated by a hybrid approach with
a configuration interaction (CI) scheme in the theory of quantum chemistry [19–25]. In the
hybrid density-functional theory, people utilized (1) all or part of the elements of the density
matrix [22] or (2) restriction of the search space [23] in the constrained minimization to define
the energy density functional. Knowledge of the modified energy density functional, however,
is not enough. Proof of existence of a minimum in the constrained search is required. In
contrast, it is possible to formulate MR-DFT in another way by referring to the original Levy–
Lieb energy functional [26, 27].

In this paper, focusing on the fluctuation reference method [27], we will discuss a self-
consistent calculation scheme of MR-DFT. The method is shown to be a kind of renormalization
method for finding a fixed effective interacting Hamiltonian. A practical approximation for the
residual exchange–correlation energy functional allows us to confirm that the scheme does give
a self-consistent solution. We will give a report of the first application of our scheme in two
types of hydrogen systems. If we introduce a local-density approximation after replacing the
residual exchange–correlation energy functional by the ordinal exchange–correlation energy
functional, the obtained energy functional is a kind of LDA + U energy functional. However,
our approach is different from the former LDA + U approaches [28–30], because we follow
the fluctuation reference method and we are not primarily looking at the excitation spectrum. A
clear difference from the LDA + U approach can be seen in the fact that we are able to avoid
the indicated approximation, replacing the residual exchange–correlation energy functional by
the ordinal exchange–correlation energy functional.
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The structure of the paper is as follows. In section 2, we introduce our energy functional.
The functional is a wavefunction functional. The variational principle is shown. In section 3,
the idea of the fluctuation reference is introduced. The uniqueness theorem of the U term
is briefly reviewed. We discuss the extended Kohn–Sham Hamiltonian as a fixed-point
Hamiltonian in MR-DFT in section 4. In section 5, the importance of the density fluctuation in
determining the correlated nature of electron systems is discussed. In section 6, we introduce
a practical application of the method with two hydrogen systems. A final discussion and
summary is given in section 7.

2. Energy functional

We review the formal theory of the extended Kohn–Sham scheme (EKSS) [26]. We consider
a non-relativistic electron system with N electrons in an external scalar potential vext(r). The
Hamiltonian operator that we consider is

ĤC = T̂ + V̂ee +
∫

d3r vext(r)n̂(r). (1)

The kinetic-energy operator is given by,

T̂ = − h̄2

2m

∫
d3r

∑
σ

lim
r′→r

ψ̂†
σ (r

′)�rψ̂σ (r),

and the inter-electron repulsion is

V̂ee = 1

2

∫
d3r d3r ′ e2

|r − r′|
∑
σ,σ ′

ψ̂†
σ (r)ψ̂

†
σ ′(r′)ψ̂σ ′(r′)ψ̂σ (r).

The ground state |�GS〉 of the system exists and gives the lowest energy E0 and the single
particle density as,

E0 = 〈�GS|ĤC |�GS〉. (2)

nGS(r) = 〈�GS|n̂(r)|�GS〉. (3)

Here n̂(r) ≡ ∑
σ ψ̂

†
σ (r)ψ̂σ (r), with the electron field operator ψ̂σ (r) satisfying

[ψ̂σ (r), ψ̂†
σ ′(r′)] = δ(r − r′)δσ,σ ′ .

We know the following density-functional theory [5]. For a normalizable wavefunction �
with a finite kinetic energy, the single-particle density n(r) of � and |∇(n(r))1/2|2 are in a set
of integrable functions in R

3. A set H 1 is a set of functions f for which
∫

f 2 and
∫ |∇ f |2 are

finite. We consider a minimization scheme with respect to n(r) > 0 such that n(r)1/2 ∈ H 1(R3)

and
∫

n(r) d3r = N . This class of functions is called IN .
Since a minimizing sequence of a positive quadratic form in H1(R

3N ) has a limit, and
since the Harriman construction [31, 5] ensures the existence of � giving n(r) ∈ IN , one can
introduce a universal energy functional F[n] which is called the Levy–Lieb energy functional
and is defined by

F[n] = min
�→n(r)

〈�|T̂ + V̂ee|�〉. (4)

Utilizing this energy functional, we can construct the minimization process of EKSS. To
formulate it, let us consider a set of orthogonalized normalizable functions {φi (r)}, the creation
and annihilation operator c†

iσ and ciσ , and a number operator n̂iσ = c†
iσ ciσ with respect to φi(r).

Expectation values n̄iσ = 〈� ′|n̂iσ |� ′〉 are given for a state |� ′〉. We introduce another density
functional

FU [n] = min
� ′→n(r)

〈� ′|T̂ + U

2

∑
i

(n̂i↑ + n̂i↓ − n̄i↑ − n̄i↓)2|� ′〉. (5)

There is a minimizing state for any n(r) ∈ IN .
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As the ordinal Kohn–Sham scheme, EKSS ensures that the total energy E0 and the single-
particle density nGS(r) of the ground state are reproduced. This is due to the definition of the
optimization process utilizing the Levy–Lieb energy functional. The physical phase space of
|�〉 is divided into pieces specified by their single-particle density n(r). Then, the minimization
process is decomposed into the inner process with respect to |�〉 within the subspace given by
n(r) and the outer process with respect to n(r).

If we further pay attention to the Hadjisavvas–Theophilou scheme [6], we can show EKSS
in a rigorous manner. This process is easily shown in the following equality:

E0 = 〈�GS|T̂ + V̂ee|�GS〉 +
∫

nGS(r)vext(r) d3r

= min
n

{
min

�→n(r)
〈�|T̂ + V̂ee|�〉 +

∫
n(r)vext(r) d3r

}

= min
n

{
min

� ′→n(r)
〈� ′|T̂ + U

2

∑
i

(n̂i↑ + n̂i↓ − n̄i↑ − n̄i↓)2|� ′〉

+ F[n] − FU [n] +
∫

n(r)vext(r) d3r

}

= min
� ′

{
〈� ′|T̂ + U

2

∑
i

(n̂i↑ + n̂i↓ − n̄i↑ − n̄i↓)2|� ′〉

+ e2

2

∫
n� ′(r)n� ′(r)

|r − r′| d3r d3r ′ + F[n� ′ ]

− e2

2

∫
n� ′(r)n� ′(r)

|r − r′| d3r d3r ′ − FU [n� ′ ] +
∫

n� ′(r)vext(r) d3r

}

= min
� ′

{
〈� ′|T̂ + U

∑
i

n̂i↑n̂i↓|� ′〉 + U

2

∑
i

(
n̄i − n̄2

i

)

+ e2

2

∫
n� ′(r)n� ′(r)

|r − r′| d3r d3r ′ + Erxc[n� ′ ] +
∫

n� ′(r)vext(r) d3r

}

= min
� ′ ḠU [� ′]. (6)

Here, n� is the density associated with � ′,

n� ′(r) = 〈� ′|n̂(r)|� ′〉.
Thus we have found that the minimization process of a wavefunction functional ḠU [� ′] gives
the exact value of the total energy of the system.

In a general form, the energy functional ḠEKS[�] of EKSS is given in the following
formula.

ḠEKS[�] = 〈�|T̂ + V̂red|�〉 − min
� ′→n�

〈� ′|T̂ + V̂red|� ′〉 + F[n� ] +
∫

d3r vext(r)n�(r)

= 〈�|T̂ + V̂red|�〉 + 1

2

∫
n�(r)n�(r′)

|r − r′| d3r d3r ′

+ Erxc[n�] +
∫

d3r vext(r)n�(r). (7)

Here the operator V̂red denotes a generalized operator counting fluctuation or hidden order
parameters which are of a higher order than that of n(r). The operator has to be positive semi-
definite and be bounded from above. When minimizing ḠEKS[�] with respect to � , which is
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an auxiliary wavefunction, the value of ḠEKS[�] becomes E0. This is easily seen by looking
at the first line of equation (7), in which 〈�|T̂ + V̂red|�〉 − min� ′→n� 〈� ′|T̂ + V̂red|� ′〉 � 0
becomes zero at the minimum. At this minimum point, � gives the minimum value of the
expectation value 〈�|T̂ + V̂red|�〉 within a phase space of wavefunctions whose single-particle
density is n� . Now, the density functional F[n� ] + ∫

d3r vext(r)n�(r) becomes a minimum
when n�(r) is equal to the single-particle density of the true ground state nGS(r). Thus,
the total minimization is achieved only if n�(r) = nGS(r) and if � gives the minimum of
〈�|T̂ + V̂red|�〉 within the phase space of wavefunctions which give nGS(r).

One would find that equation (7) is nothing but the definition of Erxc[n� ]. Formally, V̂red

is arbitrary, since redefinition of Erxc[n� ] keeps the equality. Moreover, the kinetic term and
the Hartree term are not necessarily given by the formula in equation (7). At present, we just
follow the conventional idea that the Hartree-type approximation would be close to the answer,
when we know a priori the density n(r). Using the usual kinetic energy of fermions with the
electron mass, we have determined Erxc[n� ]. This guideline may be explained in the following
manner. If we know that n(r) is the appropriate order parameter, it would be natural to expect
that the explicit energy functional written in n(r) with the Hartree term reflects a dependence
on the structure of the materials at the first stage. The electron charge density acts as a source
and creates the scalar Coulombic field. In addition, introduction of the fermion kinetic energy
〈�|T̂ |�〉 keeps the system from collapse to the bosonic solution. The reason why we conclude
the above statement is that the variable of the theory is n(r). The kinetic energy functional,
however, has another meaning, as discussed in section 7.

An important point for the density-functional theory is that we can find continual
refinement for the improvement. The introduction of 〈�|V̂red|�〉 shifts the energy functional
so that |�〉 represents a correlated electron state. Using the entangled state, the expression
of the energy functional is modified. In the new description, explicit evaluation of the energy
is performed with the Hartree term, the kinetic energy and the fluctuation. If the residual
correlation energy functional Erxc[n� ] becomes small in ratio to the total energy by this
modification, we notice that the fluctuation has emerged. Now we start to explain the idea
in detail.

To proceed, we need to consider functional differentiability [9]. For this purpose, all of
the energy functional defined above should be replaced by the Legendre transforms of them.
The technique was introduced by Lieb [5]. To specify the problem, we consider ḠU [�]. By
making a variation with respect to 〈�|, we have an extended-Kohn–Sham equation (EKSE):[

T̂ +
∫
veff(r)n̂(r) d3r

]
|�〉 +

∑
i

U n̂i,↑n̂i,↓|�〉

+
∑

i

U

2
(1 − 2n̄i )

∑
σ

n̂i,σ |�〉 = E |�〉. (8)

Here n̄i = ∑
σ n̄i,σ . A Lagrange multiplier E is introduced to keep the norm of |�〉 to 1. Here

the effective single-particle potential veff(r) is given by

veff(r) =
∫

n(r′)
|r − r′| d3r ′ + δErxc[n]

δn(r)
+ vext(r). (9)

The charge density n(r) is given by

n(r) =
∑
σ

〈�|ψ̂†
σ (r)ψ̂σ (r)|�〉. (10)

Please note that we have not yet given a determination method for {φi(r)}, but that the
variational principle always holds rigorously.

5
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We solve the auxiliary one-body problem given by veff as{
− h̄2

2m
�r + veff(r)

}
χl(r) = εlχl(r), (11)

in which the χl(r) are determined to be normalized and orthonormal. If we construct a set of
creation and annihilation operators d†

l,σ and dl,σ associated with χl(r), the effective many-body
problem is found:{∑

l,σ

εld
†
l,σ dl,σ + U

∑
i

n̂i,↑n̂i,↓ +
∑

i

U

2
(1 − 2n̄i )

∑
σ

n̂i,σ

}
|�〉 = E |�〉. (12)

Note again that n̂i,σ = c†
i,σ ci,σ is defined by φi (r). In a crystal, the index l may be a combined

index of the crystal momentum k and the band index n. One may call EKSE defined by
equations (11) and (12) a first-principles Anderson model or a first-principles Hubbard model.

3. A comment on the uniqueness of the model

In principle, EKSS works irrespective of the form of V̂red, if we can check the existence of
the minimum of 〈�|T̂ + V̂red|�〉 and its bound. This fact tells us about the flexibility of the
theory. A large class of effective Hamiltonians exists and each auxiliary system is an extended
Kohn–Sham model. Thus, we need to have a rule for selecting an appropriately chosen effective
model for practical calculation. In other words, there should be a guiding principle to determine
ḠU [�]. The idea is that there has to be a physical quantity which is in a higher order than n(r)
and which specifies the model.

At the beginning, we need to understand the nature of ḠU [�] to construct the best-fitting
model. To make the discussion concrete, let us consider a U term in our theory. For a given
normalizable localized orbital φi (r), density fluctuation is determined as follows:

〈n2
i 〉 ≡ 〈(ni,↑ + ni,↓ − n̄i,↑ − n̄i,↑)2〉. (13)

A key observation is that the fluctuation counted by the model may be suppressed, if the
minimizing � changes when the value of U is increased in equation (12).

The U term in ḠU [� ′] is given by the following energy functional:

〈�|V̂red|�〉 = U

2
〈�|n2

i |�〉. (14)

A requirement is that the U term has to be bounded from below and from above. This is
guaranteed in the above expression, since the quadratic form is positive-semi-definite and the
lemma below holds [27].

Lemma 1. 〈n2
i 〉 is real. The following inequality holds:

0 � 〈n2
i 〉 � 1. (15)

We also have the following few statements, which are given here without proof.

Lemma 2. Assume that the ground state of a Coulomb system given by vext(r) exists. (i) The
ground state |�〉 of a corresponding extended-Kohn–Sham model ḠU [�] with a given positive
U exists. (ii) For fixed n(r), F̄(U) = min�→n〈�|T̂ + U

2 n2
i |�〉 is a continuous function of U.

(iii) If a state |�〉 is the ground state of ḠU1 [�] and ḠU2 [�] with 0 � U1 < U2 simultaneously,
|�〉 is the ground state of ḠU [�] in a finite range [U1,U2] of U.

6
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The proofs are given in another paper [27]. Finiteness of 〈n2
i 〉 is utilized for the proof of

continuity. The constraint for the degeneracy of the Coulomb system is not required in lemma 2.
If we increase U from zero, the effective interaction in equation (8) brings the system

into a correlated regime. The change results in the suppression of the fluctuation considered.
Thus, the U term can control the value of 〈n2

i 〉. For the original Coulomb system, we can
also determine 〈n2

i 〉GS in principle, once we fix φi (r). We are thus allowed to compare the
fluctuation of the original system and the extended Kohn–Sham system. There could be an
adjusted value of U for which 〈n2

i 〉 of EKSS is identical to that of the Coulomb system.
At a first glance, this point is not so important, since the density-functional theory tells us

nothing about fluctuation or correlation functions. The Kohn–Sham wavefunction is introduced
to determine the minimization process with respect to n(r) and does not have a direct relevance
in itself. However, if the given extended Kohn–Sham system is properly written in a multi-
reference description, and if the obtained extended Kohn–Sham model reproduces an essential
nature of the original system, the theory may have gone beyond the original concept of the
density-functional theory.

For example, the introduction of U can make the extended Kohn–Sham system the Mott
insulator. The solidification caused by the suppression of the density fluctuation given by 〈n2

i 〉
may be detected in practical calculations. As discussed in sections 6 and 7, we can judge
whether the system is a Mott insulator or not. Thus, reproduction of important fluctuation can
be a key procedure for having a good description of some materials.

In a previous work, Kusakabe has shown a statement on uniqueness of the U term. We
have the following exact statement.

Theorem 3. Assume that the ground state of a Coulomb system is non-degenerate. An
appropriate extended Kohn–Sham model given by ḠU [�] which has a non-degenerate ground
state and reproduces both nGS(r) and 〈n2

i 〉GS is uniquely determined, or it does not exist.

This is a principle of our fluctuation reference method.
The restriction on the degeneracy of the Coulomb ground state is strict in the above

theorem. Some systems are known to have degeneracy in the ground state. As for the
degeneracy due to the spatial symmetry, the condition may not be a problem, since we are
allowed to consider an outer scalar field which breaks the symmetry. Internal symmetry
considered of the present description of the many-electron system with equation (1) as the
electron spin. We may have degeneracy due to the internal symmetry of this spin degrees of
freedom. As for the trivial degeneracy coming from the SU(2) symmetry of the total spin,
an external magnetic field will lift the degeneracy via the Zeeman splitting. If we change the
structure of atomic configuration, effective spin interactions in the system change to lift the
degeneracy in some cases.

4. Renormalization of the extended Kohn–Sham model

We now clarify that the self-consistent determination of the extended Kohn–Sham model is
a sort of renormalization process. We consider equation (8) or (12). The set of solutions of
equation (11), χl(r), can be used to create φi(r). In each step in the self-consistent loop, n(r)
is changing gradually and thus χl(r) is too. What can be fixed in the process is an algorithm to
make φi(r) from χl(r).

More precisely, considering a lattice structure, we can diagonalize the single-particle part
using Bloch waves χl(r) = χn,k(r). The orbital is at first specified by a combined index l with
band index n and crystal momentum k. A unitary transformation from the Bloch states to the
Wannier states may be useful to define φi (r) as φm(r − R j ). We suppose that i denotes an mth

7
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localized orbital at a Wannier centre R j [32, 33]. If we fix the selection of the relevant bands
to create the Wannier states, the self-consistency loop for finding a solution of equations (11)
and (12) is well defined and it may converge.

In the model of equation (8), the scattering channels given by the effective interaction term
are open only within a subset of χl(r), which is determined by the selection of φi(r). In other
words, c†

iσ is expanded in d†
lσ in a specified nth band only. The scattering by the U term is

restricted within this band and no direct interaction with other bands exists. Thus the definition
gives a separable form of the effective interaction. If scattering processes due to the effective
interaction are completely restricted within selected bands, the form is called separable.

If the effective interaction is written in terms of the field operators ψ̂σ (r), and if the
interaction strength g(r, r′) is not written in a separable form, there should be a finite amplitude
for the scattering channel from one band to all the other bands. Thus, solving the obtained
EKSE is as hard as the original Coulomb problem. But if the fermion scattering processes due
to the effective interaction are restricted in a specified sub-space of the whole phase space,
a reduction in the many-body description is achieved. If relevant scattering processes are
appropriately chosen in the effective model, and if total self-consistency is achieved, then
the obtained Hamiltonian should be a fixed Hamiltonian. The point is that the orbitals for
describing the effective interaction have to be determined self-consistently.

The arbitrary nature of φi(r) actually allows us to have a fixed Hamiltonian. We can
redefine the U term in an optimization process of ḠU [�] by making use of φi (r) given by the
selected nth band in the calculation. If φi (r), given in a step of the self-consistency loop, is
not perfectly expanded in the former set of wavefunctions in the nth band of equation (11),
we can reconstruct φi(r) as a new Wannier orbital in the next step, starting from the obtained
nth band. This approach to redefining the effective interaction is regarded as a renormalization
process. The final fixed-point Hamiltonian would be described in a specified relevant sub-space
whose dimension is much smaller than the original problem. Irrelevant scattering processes are
smeared out from the theory. As for the electronic charge density n(r), which is an essential
quantity for determining the structure or the atomic configuration of a material, introduction
of the renormalization process does nothing harmful, since the obtained effective Hamiltonian
gives the ground-state charge density and the ground-state energy.

5. Density fluctuation

The density fluctuation 〈n2
i 〉 plays an important role in our theory. The reason why we select

this quantity as a physical quantity second to n(r) may be explained as follows.
This quantity has a value depending on the environment around φi(r). Consider a d orbital

of a copper atom as an example. The fluctuation on the orbital would not be small when copper
atoms form a bulk metal. But, if the atom is in a copper oxide, the fluctuation should be reduced
on it due to the SRCE.

In an ideal case, we can have a correlated electron state as the ground state, whose electron
density n(r) is the same as another uncorrelated state but has a different fluctuation on φi(r).
The theory in section 3 tells us that an effective many-body system properly describing both
n(r) and the fluctuation 〈n2

i 〉 on φi(r) is uniquely determined, if it exists. The ground state of
the model would have a correlated state and sometimes it even becomes a Mott insulator. A
typical example may be the Heitler–London state, which is an entangled singlet state.

Considering both the uncorrelated metallic state and the entangled state in a correlated
regime, we can easily understand the essential behaviour of 〈n2

i 〉 as follows. For a nearly
uncorrelated metal, it is easy to show that 〈n2

i 〉 = 0.5. However, it should be zero for the
Heitler–London state of the hydrogen molecule, as exemplified in section 6.

8



J. Phys.: Condens. Matter 19 (2007) 445009 K Kusakabe et al

Figure 1. The calculation cell of the hydrogen systems: (a) the hydrogen molecule and (b) a
hydrogen chain. The inter-atomic distance is R (Å) or a (Å) for the molecule or the chain. The
system in (b) consists of ten atoms with a periodic boundary condition. The outer cell is for the
many-body calculation. The inner cell denoted by the dashed lines is for the determination of the
single-particle orbital χl (r).

We may define the Fermi level EF for convenience, once equation (11) is solved with a
fixed number of electrons. The wavefunctions χl(r) are grouped in bands. For each band, a
unitary transformation to a localized orbital φi(r) is given. The typical value of the fluctuation
on it is classified in the following list:

(i) If φi(r) is deep below EF, 〈n2
i 〉 = 0. This is because the orbital is doubly occupied.

(ii) If φi(r) is far above EF, 〈n2
i 〉 = 0. This is because the orbital is empty.

(iii) If φi(r) is around EF and if the state is uncorrelated, 〈n2
i 〉 = 0.5.

(iv) If φi(r) is around EF and if the state is correlated, 〈n2
i 〉 = 0.

We have to select φi (r) to keep the symmetry of the system, otherwise we will encounter
difficulty in description of the system. Another important comment is that, if we choose an
extended wavefunction as φi (r), the fluctuation on it may approach 〈n2

i 〉 = 1 in a correlated
regime.

6. Determination of U in the hydrogen systems

In this paper, we consider hydrogen systems to demonstrate that it is possible to determine
(1) the self-consistent solution of the extended Kohn–Sham scheme, and (2) the interaction
parameter U , in practical calculations. Since the relevant orbitals are only 1s orbitals in
the hydrogen systems, the electronic structure is easily tractable. We select two systems,
i.e. the hydrogen molecule and a one-dimensional lattice structure (figure1). The former
example shows that an entangled state is obtained as a self-consistent solution of the extended

9



J. Phys.: Condens. Matter 19 (2007) 445009 K Kusakabe et al

Kohn–Sham model. The U term is determined by fitting the local fluctuation of an accurate
CI calculation for the hydrogen molecule. The latter seemingly artificial configuration of a
hydrogen chain with a periodic boundary condition is introduced to show that a Mott-insulating
state is obtained as a self-consistent solution.

For both of these systems, the extended Kohn–Sham equation is given in equation (8). The
value of U is identical for every site indexed by i , because of the symmetry of the system.
More precisely there are the C2 symmetry (the mirror symmetry with respect to the centre of
the molecule) for H2 and the translational symmetry (invariance for uniform shift by the lattice
constant a) for the chain. For both of the system, we have no spontaneous symmetry breaking
causing the charge density wave, because the final solution of EKSE is non-degenerate.

6.1. Self-consistent calculation method

The self-consistent calculation is realized by adopting an algorithm with two nested loops. The
outer loop is the determination of the CI configuration of the effective many-body problem.
The inner loop is the diagonalization of equation (11) to obtain χl(r). The index l is l = 1, 2
for a bonding state and an anti-bonding state in the molecule. Meanwhile, it is l = (n, k) with
n = 1 and k = 0, . . . , N − 1 for the chain. n = 1 corresponds to the 1s band. We define φi by

φ1 = 1√
2
(χ1 + χ2) ,

φ2 = 1√
2
(χ1 − χ2) ,

for the molecule and the Wannier state

φi = 1√
N

N∑
k=1

exp

(
i

2π

Na
kxi

)
χ1,k,

for a chain with N atoms. Note that the size of the outer cell in the x direction is Na. χ1,k is
the Bloch wave in the first 1s band with the crystal momentum p = 2πk/(Na) in the chain
direction. xi = ai is the x-coordinate of the i th atom (figure 1). In the present systems, we can
determine the transfer matrix element by

ti j =
∫
φ∗

i (r)
{
− h̄2

2m
�r + veff(r)

}
φ j (r) dr. (16)

Here, σ dependence does not appear because the system is non-magnetic. We select a typical
transfer energy t0 as that between the nearest-neighbour pair of orbitals. The U term is then
introduced and equation (12) is diagonalized. For the case of the chain, we utilize a numerical
diagonalization with the Lanczos algorithm. Here, the problem is solved for a fixed U/t0.
Fixing the CI configuration, the one-body problem of equation (11) is solved self-consistently.
Then, using the determined new χl , the effective Hubbard model is rebuilt. The self-consistency
of the CI configuration is checked in the outer loop. Actually, we can reach a totally self-
consistent solution.

The residual exchange–correlation energy functional is rewritten as follows:

Erxc[n� ] = F[n� ] − min
� ′→n�

〈� ′|T̂ + V̂red|� ′〉 − 1

2

∫
n�(r)n�(r′)

|r − r′| d3r d3r ′

= F[n� ] − min
�′→n�

〈�′|T̂ |�′〉 − 1

2

∫
n�(r)n�(r′)

|r − r′| d3r d3r ′

+ min
�′→n�

〈�′|T̂ |�′〉 − min
� ′→n�

〈� ′|T̂ + V̂red|� ′〉
= Exc[n� ] + min

�′→n�
〈�′|T̂ |�′〉 − min

� ′→n�
〈� ′|T̂ + V̂red|� ′〉. (17)
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Figure 2. The density fluctuation 〈n2
i 〉 at a 1s orbital of the hydrogen molecule. For the inter-atomic

distance R (Å), 〈n2
i 〉 is obtained using the CAS–CI calculation (circles) and the CAS–CI–DFT

calculation (crosses).

(This figure is in colour only in the electronic version)

One way to treat the above expression is utilizing the following approximation [34]:

min
� ′→n�

〈� ′|T̂ + V̂red|� ′〉  min
� ′→n�

〈� ′|T̂ |� ′〉 + min
� ′→n�

U

2

∑
i

〈� ′|n2
i |� ′〉

= min
� ′→n�

〈� ′|T̂ |� ′〉. (18)

If the search space of �′ in equation (17) is the set of the single Slater determinant φ′, and if
minφ ′→n� 〈φ′|T̂ |φ′〉 = min� ′→n� 〈� ′|T̂ |� ′〉, then Exc[n�] is the same as the ordinal exchange–
correlation energy functional. Note that� ′ and�′ are multi-Slater determinants. This is true if
we consider the Legendre transform of each expression. If equation (18) is adopted, we see that
Erxc[n� ]  Exc[n�]. Then, Exc[n� ] is approximated by the local-density approximation [36].
The treatment of equation (17) will be reconsidered in section 7. For the actual calculation in the
inner loop, we utilized the plane-wave expansion technique with the soft pseudo-potential [37].
To use the pseudo-potential with LDA does not harm the purpose of the present MR-DFT
calculation, which is planned to show the existence of self-consistent solutions. The cutoff
energy is set to be 40 (Ryd). The conjugate-gradient technique is used to optimize the Kohn–
Sham orbitals χl(r). The actual calculation was performed using a computation code called
ESopt, which was originally developed by Ogitsu and maintained by KK.

6.2. Reference calculation

As the reference calculation, we refer to the result obtained by the complete-active-space
configuration–interaction (CASCI) theory [19] for the hydrogen molecule. The Gaussian basis
set is utilized. The CAS wavefunction is prepared to incorporate all the resonating features
arising in the H2 molecule. Another MR-DFT approach, the CASCI density-functional theory
(CASCI-DFT), was also examined. In the CASCI-DFT calculation, the CI configuration is
taken from the CASCI calculation. The detailed description of the exchange–correlation energy
functional used in CASCI-DFT is seen in [25]. The fluctuation on the 1s orbital is obtained as
a function of the inter-atomic distance, as shown in figure 2.

11
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Figure 3. The effective interaction parameter U obtained using the extended Kohn–Sham
calculation for the hydrogen molecule. The dashed lines are the values of U for R =
0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.8, 2.0, and3.0 (Å), from top to bottom. The density fluctuation
〈n2

i 〉 is counted on a 1s orbital of a hydrogen atom. By adjusting 〈n2
i 〉 to the result in figure 2 for

each value of R, the optimized U is obtained (the solid line).

When the inter-atomic distance is the equilibrium value R = 0.740 Å, the fluctuation is
close to 0.5. This result tells us that the two-electron system of the hydrogen molecule is in a
weak correlated regime, when the system is in equilibrium. However, when R becomes larger
than 1 Å, the fluctuation is rapidly suppressed. This is seemingly natural, since the system
should approach the Heitler–London limit when R � 0.740 Å. The crossover region is thus
shown to be R  2 Å.

6.3. EKSS calculation of the hydrogen molecule

The MR-DFT using the extended Kohn–Sham scheme is applied to the hydrogen molecule [35].
Formally, the value of the fluctuation should be given as a function of R (Å) and U (Ryd).
However, we obtained U for a given R (Å) and 〈n2

i 〉 (figure 3). In this case, fixing 〈n2
i 〉 is

equivalent to fixing Ũ = U/t0. The value of t0 is given when the inner loop is converged.
The value of U = Ũ t0 is thus known after finding a self-consistent solution. The solution is
obtained for each fixed Ũ and R. By comparing 〈n2

i 〉 of the effective model with that obtained
by CASCI, U is determined uniquely (the solid line in figure 3).

Since we utilize the pseudo-potential method, the obtained φi(r) in the model is not the
same as that given by CASCI. Thus the estimated value is an approximate value. In principle,
the evaluation of 〈n2

i 〉 using φi(r) in CASCI is possible. An important point is that the obtained
value of U changes continuously and monotonously. Thus, in this numerical evaluation, the
determination of U is possible.

6.4. A one-dimensional hydrogen array

As the second test calculation, we consider an array of hydrogen atoms. The configuration is
imaginary, since the structure is not stable and inter-atomic forces are finite. But, to consider a
simple Mott insulator, this artificial configuration is very useful.

12
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Figure 4. The Kohn–Sham eigenvalues ε(n, p) of equation (11), which gives the single-particle
dispersion of a hydrogen chain, the value of U/t0 = 0 (crosses) or 5.2t0 with t0 (pluses) being the
transfer energy between neighbouring atoms.

We consider a periodic boundary condition with ten atoms (N = 10) in an outer simulation
cell (figure 1). Since the system does not show spontaneous charge ordering, the electron charge
density n(r) has a periodicity that is same as that of the array. Thus, we can consider an inner
unit cell containing a single atom in it. Within the second unit cell, n(r) is kept in the simulation.

For a multi-reference state, we have an expansion:

|�〉 =
∑
α

Cα|�α〉, (19)

|�α〉 =
Nu∏

m=1

c†
uα,m↑

Nd∏
n=1

c†
dα,n↓|0〉. (20)

Here, α is an index specifying the CI configuration. Considering Nu up electrons and Nd down
electrons, we need to specify the positions of up electrons as uα,m (m = 1, . . . , Nu) and those of
the down electrons as dα,n (n = 1, . . . , Nd). They satisfy 1 � uα,1 < uα,2 < · · · < uα,Nu � N
and 1 � dα,1 < dα,2 < · · · < dα,Nd � N . In the present case, we have a half-filled Hubbard
model whose ground state is given with Nu = Nd = N/2.

Note that, for a pair of different k points k �= k ′, 〈�|c†
k,σ ck′,σ |�〉 = 〈k, σ |k ′, σ 〉 = 0. The

charge density is thus represented as,

n(r) =
∑
σ

〈�|ψ†
σ (r)ψσ (r)|�〉 =

∑
σ

∑
k,k′

φ∗
k (r)φk′ (r)〈�|c†

k,σ ck′,σ |�〉

=
∑
σ

∑
k

|φk(r)|2〈�|c†
k,σ ck,σ |�〉 =

∑
σ

∑
k

|φk(r)|2n(k, σ ) (21)

where n(k, σ ) is the momentum distribution given by |�〉. The system is found in a
paramagnetic state and φk(r) and n(k, σ ) = n(p) lose their spin dependence, in which the
crystal momentum p = 2πk/(Na) is used.

In this simulation, the value of U is approximated to be U = 5.2t0, which is roughly
estimated from the result of the hydrogen molecule in section 6.3. In the obtained self-
consistent solution, the transfer terms ti, j are given by the Fourier transformation of the Kohn–
Sham eigenvalues ε(n, p). Only the 1s band (n = 1) is used to construct ti, j .

We show the single-particle dispersion of equation (11) and the momentum distribution
of the obtained self-consistent solution in figures 4 and 5, respectively. The many-body model
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Figure 5. The fermion momentum distribution n(p) of the hydrogen chain with N = 10 atoms, the
value of U/t0 = 0 (crosses) or 5.2t0 with t0 (pluses) being the transfer energy between neighbouring
atoms.

equation (12) becomes a kind of one-dimensional Hubbard model. We can see that n(r) is
almost unchanged by the introduction of U , while 〈n2

i 〉 is suppressed by the U term. This is
seen in the dispersion relation of ε(n, p), which is almost the same for cases with a finite U
and without U . On the other hand, when U = 5.2t0, n(p) is completely different from that of
the free fermion. The feature of n(p) as well as the filling factor of the system tells that the
system is in a Mott insulating phase.

7. Discussion

We have a concept of the fixed-point Hamiltonian in our theory, which is defined in the
whole phase space of the original problem. This fact is in contrast to the usual idea of the
renormalization group. The smearing process in our formulation is the self-consistency loop,
in which effective interaction processes are rebuilt via the redefinition of φi(r). In contrast to
the usual renormalization group analysis, in which the zooming-out process inevitably smears
out microscopic details of the order parameter, the central order parameter n(r) keeps its
microscopic structure in the present formulation of MR-DFT. A reason why we can reconstruct
the effective many-body Hamiltonian comes from the flexibility of EKSS based on the density-
functional theory.

In the present formulation of EKSS, people might think that the reference calculation is
inevitable for obtaining the value of U . If we utilize LDA for the residual exchange–correlation
energy functional, the approach may seem close to the established LDA + U . Now, we will
propose an indicator to find out the clue of the change in fluctuation appearing in the system.
We also discuss a method for detecting the Mott insulating transition in MR-DFT. Due to
these characteristic factors, EKSS is qualitatively and quantitatively different from the known
LDA + U approaches.

7.1. An indicator for fluctuation suppression

We analyse the EKSS result of the hydrogen molecule to test the refinement of the residual
exchange–correlation energy functional. In figures 6–8, we show the total energy, the kinetic
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Figure 6. The total energy Etot for the hydrogen molecule with the inter-atomic distance R (Å)
obtained by EKSS. Depending on the fluctuation 〈n2

i 〉, Etot increases monotonically.

Figure 7. The kinetic energy Ekin for the hydrogen molecule with the inter-atomic distance R (Å)
obtained by EKSS. The value is written as a function of 〈n2

i 〉, which is controlled by U .

energy and the Hartree term of the system. Here, the definition of the total energy is

Etot = 〈�|T̂ |�〉 + 1

2

∫
n�(r)n�(r′)

|r − r′| d3r d3r ′ + Exc[n� ] +
∫

d3rvext(r)n�(r) (22)

in which the contribution of the U term is omitted. |�〉 is obtained by solving equation (12),
so that the state is a correlated fermion state. The kinetic energy and the Hartree term denote
Ekin = 〈�|T̂ |�〉 and

EHartree = 1

2

∫
n�(r)n�(r′)

|r − r′| d3r d3r ′.

Now, we have another expression for E0. Consider the minimizing |�〉 of 〈� ′|T̂ +V̂red|� ′〉
which gives nGS(r) and is the solution of equation (12). Then, we have
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Figure 8. The Hartree term EHartree for the hydrogen molecule with the inter-atomic distance R (Å)
obtained by EKSS. The value is written as a function of 〈n2

i 〉, which is controlled by U .

E0 = 〈�|T̂ + V̂red|�〉 + 1

2

∫
n�(r)n�(r′)

|r − r′| d3r d3r ′ + Erxc[n� ] +
∫

d3rvext(r)n�(r)

= 〈�|T̂ + V̂red|�〉 + 1

2

∫
n�(r)n�(r′)

|r − r′| d3r d3r ′ + Exc[n�]

+ min
�′→n�

〈�′|T̂ |�′〉 − min
� ′→n�

〈� ′|T̂ + V̂red|� ′〉 +
∫

d3rvext(r)n�(r)

= 〈�|T̂ |�〉 + 1

2

∫
n�(r)n�(r′)

|r − r′| d3r d3r ′ + Exc[n� ]

+
∫

d3rvext(r)n�(r)+ min
�′→n�

〈�′|T̂ |�′〉 − 〈�|T̂ |�〉. (23)

Thus we may write E0 as

E0 = Etot + min
�′→n�

〈�′|T̂ |�′〉 − 〈�|T̂ |�〉. (24)

This is another exact expression for the true total energy of the electron system. Note that
the U term does not appear in the formula, although it affects |�〉. People might find that the
above expression can be used to avoid the double-counting problem. Let us evaluate E0 within
the approximation utilized in section 6. Now, look at the kinetic energy Ekin for the hydrogen
molecule (figure 7). When R < 1.0 (Å), the value decreases with decreasing 〈n2

i 〉, which is
controlled by increasing U . Namely, the horizontal axis is the direction of increasing U . This
reduction in the kinetic energy is caused by expansion of the wavefunction in the real space.
Actually, the Hartree term decreases and the electron–ion potential terms reduce their absolute
values. In this range, as seen in the shift in the Hartree term, n(r) expands with increasing U .
Thus, we find that Ekin decreases in a weakly correlated regime (R < 1.0 (Å)) by increasing
U .

Let us compare the result with the cases with R � 1.0 (Å). In this region, Ekin increases by
increasing U . If we look at EHartree, we see that the value does not change so much and is almost
constant, when R � 2.0 (Å). This fact means that n(r) is nearly unchanged. What the U term
does in this regime is that it only shifts the internal fluctuation. Thus, the value of Ekin increases.
Now look at the expression of equation (24). The true value of E0 is estimated by adding the
kinetic energy of an uncorrelated fermion system 〈�′|T̂ |�′〉, which has n(r) = n�(r), and
subtracting 〈�|T̂ |�〉 from Etot. In this example, since n(r) is nearly unchanged against a shift
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in U for R � 1.0 (Å), min�′→n� 〈�′|T̂ |�′〉 for finite U may be approximated by Ekin for
U = 0. The result suggests that E0 is almost unchanged by increasing U , while the state |�〉
becomes a correlated state.

On the other hand, if we detect a decrease in Ekin by increasing U , this suggests
that minimizing the �′ of 〈�′|T̂ |�′〉 should be close to � . We have an inequality,
min�′→n� 〈�′|T̂ |�′〉 � 〈�|T̂ |�〉. Thus, E0 evaluated for finite U is nearly the same as Etot.
However, Etot increases through the introduction of U . When we have the weakly correlated
regime R < 1.0 (Å), the U term is not necessary for an appropriate description of the system.

As a result, we conclude that we can utilize the U -dependence of Ekin = 〈�|T̂ |�〉 to
detect the occurrence of Coulomb suppression in a correlated electron system. Once we have a
properly designed method for estimating min�′→n� 〈�′|T̂ |�′〉, EKSS works as a first-principles
calculation method for the correlated electron system in general, even without a reference
calculation prepared for each individual problem. The target systems for EKSS include the
Mott insulating state. Actually, we know a numerical algorithm [38] for obtaining the Legendre
transform:

T̄ [n] = sup
v

[
min
�

〈�|
{

T̂ +
∫

drv(r)
(
n̂(r)− n(r)

)} |�〉
∣∣∣∣ v ∈ L3/2 + L∞

]
.

7.2. A test for the Mott insulator

To test the conduction property of the system within DFT, we may be able to utilize the
following technique for the momentum boost. Let us consider a twisted boundary condition
for our simulation:

�(r + Lx ex) = exp(iθ)�(r), �(r + L yey) = �(r), �(r + Lzez) = �(r),

where ei and Li (i = x, y, z) are the unit vectors and the length of a simulation cell,
respectively. The density-functional theory holds for any fixed θ . Let us shift θ from zero to
2π adiabatically and obtain the lowest energy eigenvalue E0(θ). Then we can connect E0(θ)

and draw a graph of E0(θ) as a function of θ .
According to the Kohn argument [39], we can identify the Mott insulating state by looking

at the period of E0(θ), although we may see only the lowest edge of the whole E0(θ). If
formation of a gap in the flow of E0(θ) is detected by changing the lattice constant, for
example, the system undergoes a Mott transition. Actually, a complete test using the one-
dimensional Hubbard model showed the period 2π for the half-filled band, which is useful for
characterization of the ground state [40]. If the system is described in the Kohn–Sham scheme
with LDA, however, the period would not change from the value of a metallic state. This failure
would be recovered by the introduction of the U term in the Kohn–Sham scheme. If we ask
the system to reproduce the local fluctuation, modification of the Kohn–Sham system naturally
makes the system interacting. This is a way to model the stiffness of the Mott insulating state
against the boost induced by the imaginative magnetic flux, which amounts to θ

2π �0 with the
unit flux �0. The nature of the ground state is modified via a change in the charge fluctuation.
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[24] Gräfenstein J and Cremer D 2005 Mol. Phys. 103 279
[25] Yamanaka S, Nakata K, Takada T, Kusakabe K, Ugalde J M and Yamaguchi K 2006 Chem. Lett. 35 242
[26] Kusakabe K 2001 J. Phys. Soc. Japan 70 2038
[27] Kusakabe K 2005 Preprint cond-mat/0505703
[28] Anizimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[29] Solovyev I V, Dederichs P H and Anisimov V I 1994 Phys. Rev. B 50 16861
[30] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[31] Harriman J E 1981 Phys. Rev. A 6 680
[32] Wannier G H 1937 Phys. Rev. 52 191
[33] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[34] Kusakabe K, Takahashi M and Suzuki N 2006 Physica B 378–380 271
[35] Takahashi M, Kusakabe K and Suzuki N Proc. 28th Int. Conf. on Phys. Semicon. (Wien) at press
[36] Perdew J F and Wang Y 1992 Phys. Rev. B 45 13244
[37] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[38] Kusakabe K 2007 unpublished
[39] Kohn W 1964 Phys. Rev. 133 A171
[40] Kusakabe K 1997 J. Phys. Soc. Japan 66 2075

18

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1073/pnas.76.12.6062
http://dx.doi.org/10.1103/PhysRevA.26.1200
http://dx.doi.org/10.1002/qua.560240302
http://dx.doi.org/10.1103/PhysRevA.30.2183
http://dx.doi.org/10.1103/PhysRevLett.58.1028
http://dx.doi.org/10.1103/PhysRevLett.58.526
http://dx.doi.org/10.1143/JJAP.26.L352
http://dx.doi.org/10.1143/JJAP.26.L417
http://dx.doi.org/10.1103/PhysRevB.35.7252
http://dx.doi.org/10.1016/0038-1098(87)91051-9
http://dx.doi.org/10.1103/PhysRevB.36.7248
http://dx.doi.org/10.1016/0009-2614(79)87242-5
http://dx.doi.org/10.1063/1.1681192
http://dx.doi.org/10.1063/1.1681193
http://dx.doi.org/10.1103/PhysRevA.44.1549
http://dx.doi.org/10.1080/002689797171418
http://dx.doi.org/10.1080/00268970512331318858
http://dx.doi.org/10.1246/cl.2006.242
http://dx.doi.org/10.1143/JPSJ.70.2038
http://arxiv.org/abs/cond-mat/0505703
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.50.16861
http://dx.doi.org/10.1103/PhysRevB.52.R5467
http://dx.doi.org/10.1103/PhysRevA.24.680
http://dx.doi.org/10.1103/PhysRev.52.191
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1016/j.physb.2006.01.101
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRev.133.A171
http://dx.doi.org/10.1143/JPSJ.66.2075

	1. Introduction
	2. Energy functional
	3. A comment on the uniqueness of the model
	4. Renormalization of the extended Kohn--Sham model
	5. Density fluctuation
	6. Determination of U in the hydrogen systems
	6.1. Self-consistent calculation method
	6.2. Reference calculation
	6.3. EKSS calculation of the hydrogen molecule
	6.4. A one-dimensional hydrogen array

	7. Discussion
	7.1. An indicator for fluctuation suppression
	7.2. A test for the Mott insulator

	Acknowledgments
	References

